OPERATION (Continued)

These requirements are satisfied by using constant velocity (CV) joints at the inboard (differential) end and outboard (wheel) end of the halfshaft. A constant velocity joint is a mechanism for transmitting uniform torque and rotary motion while operating through its angle range. The inboard CV joint is a "plunge"-type joint which provides for the required axial movement to affect shaft length changes. The outboard CV joint has a higher angle capability than the inboard CV joint to accommodate wheel turning angles.

The front-wheel drive CV joints and halfshaft assemblies rotate at approximately one-third the speed of conventional rear wheel drive driveshafts and do not contribute to rotational vibration disturbances.

DIAGNOSIS

NOTE: CV joints should not be replaced unless disassembly and inspection reveals unusual wear.

Noise and Vibration in Turns

Clicking, popping or grinding noises while turning may be caused by the following:

- Damaged CV joint boots or loose boot clamps resulting in inadequate or contaminated lube in outboard or inboard CV joints.
- 2. Another component contacting halfshaft assembly.
- Worn, damaged or improperly installed wheel bearing, brake or suspension/steering components.

Vibration at Highway Speeds:

- 1. Out of balance front wheels or tires.
- 2. Out of round front tires.
- Improperly seated outboard CV joint in front wheel hub.

Refer to Section 00-04 for high-speed shake diagnosis.

NOTE: Halfshafts are not balanced and do not contribute to rotational vibration disturbances.

Shudder or Vibration During Acceleration:

- Excessively high CV joint operating angles caused by improper ride height. Check ride height, verify proper spring rate and check items 1, 2 and 3 under Halfshaft or CV Joint Pullout.
- Excessively worn or damaged inboard or outboard CV joint.

Halfshaft or CV Joint Pullout

MPO Fraging Liebback Represent 2002 F

Inboard CV joint circlip missing or not properly seated in transaxle side gear.

- Engine / transaxle assembly mispositioned. Check engine mounts for damage or wear.
- Frame rail or strut tower out of position or damaged. Check underbody dimensions. Refer to Section 01-00.
- Front suspension components worn or damaged. Check for worn bushings or bent components (stabilizer bar, control arm, etc.).

INSPECTION

- Inspect boots for evidence of cracks, tears or splits.
 - NOTE: While inspecting the boots, watch for indentations ("dimples") in the boot convolutions. If an indentation is observed, it must be removed. Refer to CV Joint Boot Indentation Removal procedure.
- Inspect underbody for any indication of grease splatter in vicinity of CV joint boots, outboard and inboard locations, which is an indication of boot and/or clamp damage.
- A boot vent is used on the RH inboard silicone rubber boot on AXODE applications. The tri-lobe boot uses a pinhole vent inboard of the small clamp. The non tri-lobe boot uses a keyway vent between the interconnecting shaft and the boot under the small clamp. A small amount of grease leakage at the vent is normal.
- Inspect for transaxle differential oil seal leakage at inboard CV joint.
- 5. Ensure wheel hub retainer nut is the correct prevailing torque type.
- The silicone boot will sweat during operation, causing a light film of grease to show on the outside of the boot. This condition is normal.

CV Joint Boot Indentation

Removal

Indentations or "dimples" in the inboard and/or outboard CV joint boots may occur due to improper handling during storage or service of the halfshafts. If, during inspection, a boot is observed to be "dimpled," perform the following procedure.