UNDERSTANDING AND TROUBLESHOOTING ELECTRICAL SYSTEMS

Basic Electrical Theory

See Figure 1

For any 12 volt, negative ground, electrical system to operate, the electricity must travel in a complete circuit. This simply means that current (power) from the positive (+) terminal of the battery must eventually return to the negative (-) terminal of the battery. Along the way, this current will travel through wires, fuses, switches and components. If, for any reason, the flow of current through the circuit is interrupted, the component fed by that circuit will cease to function properly.

Perhaps the easiest way to visualize a circuit is to think of connecting a light bulb (with two wires attached to it) to the battery—one wire attached to the negative (-) terminal of the battery and the other wire to the positive (+) terminal. With the two wires touching the battery terminals, the circuit would be complete and the light bulb would illuminate. Electricity would follow a path from the battery to the bulb and back to the battery. It's easy to see that with longer wires on our light bulb, it could be mounted anywhere. Further, one wire could be fitted with a switch so that the light could be turned on and off.

The normal automotive circuit differs from this simple example in two ways. First, instead of having a return wire from the bulb to the battery, the current travels through the frame of the vehicle. Since the negative (-) battery cable is attached to the frame (made of electrically conductive metal), the frame of the vehicle can serve as a ground wire to complete the circuit. Secondly, most automotive circuits contain multiple components which receive power from a single circuit. This lessens the amount of wire needed to power components on the vehicle.

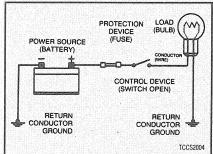


Fig. 1 This example illustrates a simple circuit. When the switch is closed, power from the positive (+) battery terminal flows through the fuse and the switch, and then to the light bulb. The light illuminates and the circuit is completed through the ground wire back to the negative (-) battery terminal. In reality, the two ground points shown in the illustration are attached to the metal frame of the vehicle, which completes the circuit back to the battery

HOW DOES ELECTRICITY WORK: THE WATER ANALOGY

Electricity is the flow of electrons—the subatomic particles that constitute the outer shell of an atom. Electrons spin in an orbit around the center core of an atom. The center core is comprised of protons (positive charge) and neutrons (neutral charge). Electrons have a negative charge and balance out the positive charge of the protons. When an outside force causes the number of electrons to unbalance the charge of the protons, the electrons will split off the atom and look for another atom to balance out. If this imbalance is kept up, electrons will continue to move and an electrical flow will exist.

Many people have been taught electrical theory using an analogy with water. In a comparison with water flowing through a pipe, the electrons would be the water and the wire is the pipe.

The flow of electricity can be measured much like the flow of water through a pipe. The unit of measurement used is amperes, frequently abbreviated as amps (a). You can compare amperage to the volume of water flowing through a pipe. When connected to a circuit, an ammeter will measure the actual amount of current flowing through the circuit. When relatively few electrons flow through a circuit, the amperage is low. When many electrons flow, the amperage is high.

Water pressure is measured in units such as pounds per square inch (psi); The electrical pressure is measured in units called volts (v). When a voltmeter is connected to a circuit, it is measuring the electrical pressure.

The actual flow of electricity depends not only on voltage and amperage, but also on the resistance of the circuit. The higher the resistance, the higher the force necessary to push the current through the circuit. The standard unit for measuring resistance is an ohm. Resistance in a circuit varies depending on the amount and type of components used in the circuit. The main factors which determine resistance are:

Material—some materials have more resistance than others. Those with high resistance are said to be insulators. Rubber materials (or rubberlike plastics) are some of the most common insulators used in vehicles as they have a very high resistance to electricity. Very low resistance materials are said to be conductors. Copper wire is among the best conductors. Silver is actually a superior conductor to copper and is used in some relay contacts, but its high cost prohibits its use as common wiring. Most automotive wiring is made of copper.

 Size—the larger the wire size being used, the less resistance the wire will have. This is why components which use large amounts of electricity usually have large wires supplying current to them.

 Length—for a given thickness of wire, the longer the wire, the greater the resistance. The shorter the wire, the less the resistance. When determining the proper wire for a circuit, both size and length must be considered to design a circuit that can handle the current needs of the component. • Temperature—with many materials, the higher the temperature, the greater the resistance (positive temperature coefficient). Some materials exhibit the opposite trait of lower resistance with higher temperatures (negative temperature coefficient). These principles are used in many of the sensors on the engine.

OHM'S LAW

There is a direct relationship between current, voltage and resistance. The relationship between current, voltage and resistance can be summed up by a statement known as Ohm's law.

Voltage (E) is equal to amperage (I) times resistance ®: E=I x R

Other forms of the formula are R=E/I and I=E/R In each of these formulas, E is the voltage in volts, I is the current in amps and R is the resistance in ohms. The basic point to remember is that as the resistance of a circuit goes up, the amount of current that flows in the circuit will go down, if voltage remains the same.

The amount of work that the electricity can perform is expressed as power. The unit of power is the watt (w). The relationship between power, voltage and current is expressed as:

Power (w) is equal to amperage (I) times voltage (E): W=I x E

This is only true for direct current (DC) circuits; The alternating current formula is a tad different, but since the electrical circuits in most vehicles are DC type, we need not get into AC circuit theory.

Electrical Components

POWER SOURCE

Power is supplied to the vehicle by two devices: The battery and the alternator. The battery supplies electrical power during starting or during periods when the current demand of the vehicle's electrical system exceeds the output capacity of the alternator. The alternator supplies electrical current when the engine is running. Just not does the alternator supply the current needs of the vehicle, but it recharges the battery.

The Battery

In most modern vehicles, the battery is a lead/acid electrochemical device consisting of six 2 volt subsections (cells) connected in series, so that the unit is capable of producing approximately 12 volts of electrical pressure. Each subsection consists of a series of positive and negative plates held a short distance apart in a solution of sulfuric acid and water.

The two types of plates are of dissimilar metals. This sets up a chemical reaction, and it is this reaction which produces current flow from the battery when its positive and negative terminals are connected to an electrical load. The power removed from the battery is replaced by the alternator, restoring the battery to its original chemical state.