WIRING & HARNESSES

The average vehicle contains meters and meters of wiring, with hundreds of individual connections. To protect the many wires from damage and to keep them from becoming a confusing tangle, they are organized into bundles, enclosed in plastic or taped together and called wiring harnesses. Different harnesses serve different parts of the vehicle. Individual wires are color coded to help trace them through a harness where sections are hidden from view

Automotive wiring or circuit conductors can be either single strand wire, multi-strand wire or printed circuitry. Single strand wire has a solid metal core and is usually used inside such components as alternators, motors, relays and other devices. Multi-strand wire has a core made of many small strands of wire twisted together into a single conductor. Most of the wiring in an automotive electrical system is made up of multi-strand wire, either as a single conductor or grouped together in a harness. All wiring is color coded on the insulator, either as a solid color or as a colored wire with an identification stripe. A printed circuit is a thin film of copper or other conductor that is printed on an insulator backing. Occasionally, a printed circuit is sandwiched between two sheets of plastic for more protection and flexibility. A complete printed circuit, consisting of conductors, insulating material and connectors for lamps or other components is called a printed circuit board. Printed circuitry is used in place of individual wires or harnesses in places where space is limited, such as behind instrument panels.

Since automotive electrical systems are very sensitive to changes in resistance, the selection of properly sized wires is critical when systems are repaired. A loose or corroded connection or a replacement wire that is too small for the circuit will add extra resistance and an additional voltage drop to the circuit.

The wire gauge number is an expression of the cross-section area of the conductor. Vehicles from countries that use the metric system will typically describe the wire size as its cross-sectional area in square millimeters. In this method, the larger the wire, the greater the number. Another common system for expressing wire size is the American Wire Gauge (AWG) system. As gauge number increases, area decreases and the wire becomes smaller. An 18 gauge wire is smaller than a 4 gauge wire. A wire with a higher gauge number will carry less current than a wire with a lower gauge number. Gauge wire size refers to the size of the strands of the conductor, not the size of the complete wire with insulator. It is possible, therefore, to have two wires of the same gauge with different diameters because one may have thicker insulation than the other.

It is essential to understand how a circuit works before trying to figure out why it doesn't. An electrical schematic shows the electrical current paths when a circuit is operating properly. Schematics break the entire electrical system down into individual circuits. In a schematic, usually no attempt is made to represent wiring and components as they physically appear on the vehicle; switches and other components are shown as simply as possible. Face views of harness connectors show the cavity or terminal locations in all multi-pin connectors to help locate test points.

CONNECTORS

Dee Figures 5 and 6

Three types of connectors are commonly used in automotive applications—weatherproof, molded and hard shell.

- Weatherproof—these connectors are most commonly used where the connector is exposed to the elements. Terminals are protected against moisture and dirt by sealing rings which provide a weathertight seal. All repairs require the use of a special terminal and the tool required to service it. Unlike standard blade type terminals, these weatherproof terminals cannot be straightened once they are bent. Make certain that the connectors are properly seated and all of the sealing rings are in place when connecting leads.
- Molded—these connectors require complete replacement of the connector if found to be defective. This means splicing a new connector assembly

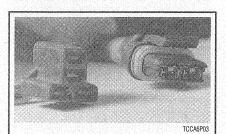


Fig. 5 Hard shell (left) and weatherproof (right) connectors have replaceable terminals

into the harness. All splices should be soldered to insure proper contact. Use care when probing the connections or replacing terminals in them, as it is possible to create a short circuit between opposite terminals. If this happens to the wrong terminal pair, it is possible to damage certain components. Always use jumper wires between connectors for circuit checking and NEVER probe through weather-proof seals.

 Hard Shell—unlike molded connectors, the terminal contacts in hard-shell connectors can be replaced. Replacement usually involves the use of a special terminal removal tool that depresses the locking tangs (barbs) on the connector terminal and allows the connector to be removed from the rear of

Fig. 6 Weatherproof connectors are most commonly used in the engine compartment or where the connector is exposed to the elements

the shell. The connector shell should be replaced if it shows any evidence of burning, melting, cracks, or breaks. Replace individual terminals that are burnt, corroded, distorted or loose.

Test Equipment

Pinpointing the exact cause of trouble in an electrical circuit is most times accomplished by the use of special test equipment. The following describes different types of commonly used test equipment and briefly explains how to use them in diagnosis. In addition to the information covered below, the tool manufacturer's instructions booklet (provided with the tester) should be read and clearly understood before attempting any test procedures.

JUMPER WIRES

** CAUTION

Never use jumper wires made from a thinner gauge wire than the circuit being tested. If the jumper wire is of too small a gauge, it may overheat and possibly melt. Never use jumpers to bypass high resistance loads in a circuit. Bypassing resistances, in effect, creates a short circuit. This may, in turn, cause damage and fire. Jumper wires should only be used to bypass lengths of wire or to simulate switches.

Jumper wires are simple, yet extremely valuable, pieces of test equipment. They are basically test wires which are used to bypass sections of a circuit. Although jumper wires can be purchased, they are usually fabricated from lengths of standard automotive wire and whatever type of connector (alligator clip, spade connector or pin connector) that is required for the particular application being tested. In cramped, hard-to-reach areas, it is advisable to have insulated boots over the jumper wire terminals in order to prevent accidental grounding. It is also advisable to include a standard automotive fuse in any jumper wire. This is commonly referred to as a "fused jumper". By inserting an in-line fuse holder between a set of test leads, a fused jumper wire can be used for bypassing open circuits. Use a 5 amp fuse to provide protection against voltage spikes.

Jumper wires are used primarily to locate open electrical circuits, on either the ground (-) side of the circuit or on the power (+) side. If an electrical component fails to operate, connect the jumper wire between the component and a good ground. If the component operates only with the jumper installed, the ground circuit is open. If the ground circuit is good, but the component does not operate, the circuit between the power feed and component may be open. By moving the jumper wire successively back from the component toward the power source, you can isolate the area of the circuit where the open is located. When the component stops functioning, or the power is cut off, the open is in the segment of wire between the jumper and the point previously tested.

You can sometimes connect the jumper wire directly from the battery to the "hot" terminal of the component, but first make sure the component uses 12 volts in operation. Some electrical components, such as fuel injectors or sensors, are designed to operate on about 4 to 5 volts, and running 12 volts directly to these components will cause damage.